• Users Online: 413
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 18  |  Issue : 1  |  Page : 10-18

A comparative evaluation of fatigue resistance of two different implant overdenture stud attachments with two different denture base materials: An in vitro study


1 Department of Prosthodontics and Crown and Bridge, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India
2 Department of Oral and Maxillofacial Surgery, Government College of Dentistry, Indore, Madhya Pradesh, India

Date of Submission23-Jun-2017
Date of Acceptance11-Sep-2017
Date of Web Publication17-Jan-2018

Correspondence Address:
Dr. Namrata Agrawal
Dr Garg's Advanced Dental Treatment Centre, 64/A, Patel Nagar, Opp. Vikram Tower, Indore - 452 001, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jips.jips_159_17

Rights and Permissions
  Abstract 


Introduction: The two implant-supported overdentures have overcome the retention and stability-related problems of conventional mandibular denture. Stud attachments are widely available, less expensive, and easy to use.
Aims and Objectives: To determine fatigue resistance of two different stud attachments with two denture base materials – autopolymerizing and heat cure acrylic resin till 4320 cycles simulating 03 years of service.
Materials and Methods: Stud implant overdenture attachments, i.e., ball and socket and Dalla Bona attachments were tightened over the implants in two different mandibular edentulous base models. The housings were incorporated with both direct (chairside) and indirect (laboratory) technique into conventional mandibular dentures. These overdentures were subjected to continuous removal and insertion on Universal Testing Machine till 4320 cycles simulating 3 years of service assuming that patient takes out denture, 4 times in a day. The fatigue resistance was calculated for 0, 1440 (1 year), 2800 (2 years), and 4320 (3 years) cycles. Unpaired and paired t-tests were applied to find the level of significance.
Results: Ball and socket attachments housed with heat cure acrylic resin (indirect technique) had the highest values of fatigue resistance at all cycles. Following were Dalla Bona attachments with autopolymerizing acrylic resin (direct technique), ball and socket attachments with autopolymerizing acrylic resin (direct technique), and Dalla Bona attachments with heat cure acrylic resin (indirect technique) as per statistical analysis.
Conclusion: Two implant-supported mandibular overdenture with ball and socket attachments incorporated by indirect technique showed higher values in terms of retention and absence of disengagement/fracture of components.

Keywords: Ball and socket attachments, Dalla Bona attachments, fatigue resistance, implant-supported overdenture, overdenture stud attachments


How to cite this article:
Agrawal N, Jain S, Agrawal D. A comparative evaluation of fatigue resistance of two different implant overdenture stud attachments with two different denture base materials: An in vitro study. J Indian Prosthodont Soc 2018;18:10-8

How to cite this URL:
Agrawal N, Jain S, Agrawal D. A comparative evaluation of fatigue resistance of two different implant overdenture stud attachments with two different denture base materials: An in vitro study. J Indian Prosthodont Soc [serial online] 2018 [cited 2018 Sep 19];18:10-8. Available from: http://www.j-ips.org/text.asp?2018/18/1/10/221174




  Introduction Top


The residual ridge resorption challenges the success of mandibular complete denture retention.[1] The treatment of edentulous mandible with the two implant-supported overdenture is a well-accepted treatment with long-term successful outcomes for prosthesis and implants [2] and now considered to be the standard of care of treatment.[3],[4],[5]

Van Steenberghe et al.[6] were among the first authors to propose placement of 2 implants in the edentulous mandible in 1987. Their 98% success rate, with up to 52 months of observation, was encouraging. The prosthesis survival rates for 2 implants ranges from 92% to 100%, as per recent studies.[7],[8]

Stud, ball, and conventional bar attachments are the commonly used systems in implant-supported overdentures and their efficacy is scientifically supported.[9],[10],[11],[12],[13] Stud attachments are very straightforward to use and provide reasonable retention and stability for implant overdentures.[14] Among stud attachments, ball and socket, Dalla Bona, and locators are frequently used. Ball attachments have metal as matrix and silicone/nylon cap as patrix whereas Dalla Bona have both matrix and patrix as metals. The combination of materials such as a metal–nylon or metal–metal contact might show differences in respect to surface wear and decrease in resistance with repetitive removal–insertion cycles.[15],[16]

Therefore, it is required to know which material houses well with which type of overdenture attachment for longevity of the complete denture prosthesis and reduce failure of prosthesis in turn decreasing the patients' visits. Hence, this study was undertaken with the aim to determine the fatigue resistance of two different stud overdenture attachments – ball and socket and Dalla Bona attachments with different denture base materials – autopolymerizing and heat cure acrylic resin, in two implant-supported mandibular overdenture by process of continuous insertion and removal upto 4320 cycles. The null hypothesis was that there will be no difference in the fatigue resistance between ball and socket and Dalla Bona attachments, by direct (H0) and indirect method (H1).


  Materials and Methods Top


Mandibular edentulous base Models 1 and 2 were made by using Heat cure acrylic resin - Clear (DPI Heat Cure Universal Pack–Clear) with equidistant implants from midline at B and D positions. The two Ball attachments (ARDS implants) and two Dalla Bona (Marketed by Lifecare Devices Pvt. Ltd, Mumbai) were tightened over the implants in Model 1 and 2, respectively, with torque wrench at 30 N/cm.

Fabrication of mandibular denture

Twelve mandibular dentures were made with Heat cure acrylic resin (SR Triplex Hot Acrylic Resin, Ivoclar Vivadent Inc.) by conventional procedure, for incorporation of housings and fit was checked over Model 1 and 2.

Transfer of housings to denture

Direct technique

The access openings were made on the lingual flange of mandibular denture near canine region to allow visualization of the attachments under the denture base and excess material to flow. The uniform space must be existed in the intaglio surface of denture to house both metal and silicone components. The autopolymerizing acrylic resin monomer and polymer were mixed in rubber cup in flowable consistency. The attachments were coated with mixed acrylic resin, and a thin layer of resin was painted over opposing surface in the intaglio surface of denture. The mandibular denture was seated over the respective model and held firmly till it completely polymerized. After the final set, the denture was lifted up slowly and the female housings got transferred to the intaglio surface of denture [Figure 1] and [Figure 2]. The excess was trimmed, polished, and finished. Care was taken to avoid any voids around the housings. The fit of mandibular dentures was reevaluated on their respective Models 1 and 2, after transferring of female housings [Figure 3] and [Figure 4]. By this procedure, six mandibular overdentures, namely, AB1, AB2, and AB3 for Model 1 and AD1, AD2, and AD3 for Model 2, were prepared by direct technique for both types of attachments where A stands for autopolymerizing acrylic resin, B stands for ball attachments, and D stands for Dalla Bona attachments.
Figure 1: Mandibular overdenture with nylon housings of ball attachments transferred to intaglio surface by direct technique

Click here to view
Figure 2: Mandibular overdenture with metal housings of Dalla Bona transferred to intaglio surface by direct technique

Click here to view
Figure 3: Mandibular overdenture over the Model 1 after direct technique

Click here to view
Figure 4: Mandibular overdenture over the Model 2 after direct technique

Click here to view


Indirect technique

The final impressions of Model 1 and 2 were made with stock trays. Light-body impression material (Virtual Light Body PVS, Ivoclar Vivadent) was injected around the male components. Then, heavy-body impression material (Virtual Putty Regular Set, Ivoclar Vivadent) in the stock tray was placed over the model and allowed it to set simultaneously with the light-body material. The two implant analog arrows (Alphbio, Germany) for Ball attachments and two brass analogs (Marketed by Life Care Devices Pvt. Ltd) for Dalla Bona were secured properly over the impressions [Figure 5] and [Figure 6] and poured with die stone (Kalrock, Kalabhai, India) for master casts. The occlusion rims were made over record bases made with autopolymerizing acrylic resin (DPI RR Cold cure), and teeth arrangements (Acryrock) were done. Flasking and then dewaxing was carried out in usual manner.
Figure 5: Closed tray impression with implant analog arrows for ball attachments

Click here to view
Figure 6: Closed tray impression with brass laboratory analogs for Dalla Bona attachments

Click here to view


After dewaxing, the female housings of respective models of ball attachments and Dalla Bona attachments were snapped on, over the analogs. Heat cure acrylic resin (SR Triplex Hot Acrylic Resin, Ivoclar Vivadent Inc.) was mixed as per the instructions, and mixed dough was put over both the teeth surface and housings. Then, the dentures were processed as conventional denture. The dentures with transferred housings were finished and polished [Figure 7] and [Figure 8] and checked for fit over their respective models [Figure 9] and [Figure 10]. The six mandibular overdentures were made by indirect technique and named as HB1, HB2, and HB3 and HD1, HD2, and HD3 where H stands for heat cure acrylic resin, B stands for ball and socket attachments, and D stands for Dalla Bona attachments.
Figure 7: Mandibular over denture with transferred nylon housings of ball attachments by indirect technique

Click here to view
Figure 8: Mandibular overdenture with transferred metal housings of Dalla Bona attachments by indirect technique

Click here to view
Figure 9: Mandibular overdenture over the Model 1 after indirect technique

Click here to view
Figure 10: Mandibular overdenture over the Model 2 after indirect technique

Click here to view


Testing of fatigue resistance of both the attachment systems fabricated on the models was carried on the Universal Testing Machine (UTM Uni Test-10, ACME Engineer, India, 2015) [Figure 11]. Dislodging forces were applied in a vertical direction at a speed of 5 mm/min, on the center of mandibular overdenture with base clamped tightly on the UTM. Load cell of 100 kg was selected. The readings of all samples of both attachment systems (AB1, AB2, AB3, HB1, HB2, HB3, AD1, AD2, AD3, HD1, HD2, HD3) were noted at 0, 1440, 2880, and 4320 cycles to check for the loss of retention and development of fatigue.
Figure 11: Sample clamped on platform and being tested on Universal Testing Machine

Click here to view


The readings at 0 cycles were an initial reading denoting maximal value of retention. After subjecting to 1440 cycles, the retention values were noted with a force gauge that measured the force required to dislodge the dentures placed on the models which were clamped onto the universal testing assembly. Similarly, the retention values were obtained at 2880 and 4320 cycles.


  Results Top


The intergroup comparison that is to compare ball and socket attachments and Dalla Bona attachments relined with autopolymerizing acrylic resin and with heat cure acrylic resin were analyzed by unpaired t- tests.

The fatigue resistance of ball and socket attachments and Dalla Bona attachments relined with autopolymerizing acrylic resin, i.e., by direct technique (AB and AD); when compared [Graph 1], statistically no significant difference in values were found at any cycle. The mean fatigue resistance at 0 cycle of AB group was 35.15 ± 4.91 N and AD group was 34.35 ± 4.54 N, whereas by 4320 cycles, it was reduced to 17.45 ± 7.81 N and 10.05 ± 0.20 N, respectively [Table 1].

Table 1: Comparison of direct method for mean fatigue resistance between the two groups – ball and socket and Dalla Bona attachments (AB and AD) at all cycles (n=6)

Click here to view


However, significant difference was found at all cycles with fatigue resistance of ball and socket attachments and Dalla Bona attachments when secured with heat cure acrylic resin, i.e., indirect technique (HB and HD) [Graph 2]. The mean value of HB group was 39.15 ± 0.23 N and HD group being 17.97 ± 8.88 N at 0 cycle. After subjecting HB and HD group to 4320 cycles, the mean values were 17.42 ± 2.53 N and 4.25 ± 2.02 N [Table 2].

Table 2: Comparison of indirect method for mean fatigue resistance between the two groups – ball and socket and Dalla Bona attachments (HB and HD) at all cycles (n=6)

Click here to view


The intragroup comparison was done by paired t-test. Ball and socket attachments relined with autopolymerizing acrylic resin, i.e., by direct technique (AB1, AB2, AB3); when compared from 0 cycle to 1440, 2800 and 4320 cycles, statistically no significant difference was found at any cycle [Graph 3]. However, by indirect technique (HB1, HB2, HB3), statistically significant difference was found at all cycles with p values at 0–1440 cycle = 0.038, 0–2800 cycles = 0.003, and 0–4320 cycle = 0.004 (P< 0.005) [Graph 4].



In Dalla Bona attachments relined with autopolymerizing acrylic resin, i.e., direct technique (AD1, AD2, AD3), statistically no significant difference was found at 0–1440 cycles but significant difference was found at 0–2800 cycles (P = 0.015) and 0–4320 cycles (P = 0.010) [Graph 5]. In HD Group (HD1, HD2, HD3), i.e., by indirect technique, statistically no significant difference was found at any cycle [Graph 6].




  Discussion Top


The concept of overdentures originally involved fixing mechanical attachments to teeth, roots, or dental implants to enhance retention and stability of conventional dentures.[17],[18]

The basic principle in employing overdenture attachment systems in the treatment of resorbed edentulous mandible is to increase denture retention and stability, thereby enhancing chewing efficiency as well as patient comfort and compliance.[19],[20]

With time and use, these attachments wear down [21] and have adhesive or fatigue failure with male components of attachment, due to repeated cycles.

This study was designed to investigate the effect of removal and insertion of mandibular two implant-supported overdenture in loss of retention of two different stud overdenture attachments for up to 4320 cycles.

Based on the results of study by Al Ghafli et al.,[22] two implants were placed parallel to each other and perpendicular to the horizontal plane to retain its retentive capacity for a longer period of time in our study.

There are various techniques for incorporating these attachments to the overdenture. Broadly, they can be classified as direct techniques (performed by the clinician intraorally) or indirect techniques (performed by the technician in the laboratory).[23]

Nissan et al.[24] stated that the direct technique for attachment incorporation into mandibular implant-supported overdentures using ball attachments was superior to the indirect technique from the aftercare perspective in both immediate (pressure sores) and long-term (liner and attachment replacement). Dominici et al.[25] also supported direct procedure as it eliminated lengthy indirect laboratory procedure that requires additional implant components such as impression posts and transfer analogs. Taddei et al., 2004[26] also favored the direct technique for locating a ball attachment intraorally for being simple, economic, quick and allows the patient to retain the prosthesis.

The disadvantages of the direct technique included necessity for blocking out all undercuts during the clinical procedure, the retentive caps might not hold if free monomer present, and shrinkage, water sorption, and voids within the autopolymerizing resin.[27]

Bidra et al.[28] illustrated different techniques of incorporation of attachments to housings and concluded that depending on the clinical situation, incorporating overdenture attachments can either be performed at the record base stage, denture processing stage, or denture insertion stage.

Our study design included evaluation of two different overdenture attachments, namely, ball and socket and Dalla Bona attachments housed with two different materials, i.e., autopolymerizing acrylic (direct technique) and heat cure acrylic resin (indirect technique).

This being an in vitro study and assuming that the patient takes out mandibular denture 04 times in a day, the removal and insertion cycles were repeated till 4320 cycles simulating 03 years of clinical service, and thus, the fatigue resistance was compared at different cycles, i.e., 0 cycle ( first removal), 1440 cycle (1 year of use), 2800 (2 years of use), and 4320 (3 years of use) to assess their clinical performance. The methodology utilized in this study follows that of Saito et al.[29] and Guttal et al.[30]

The most common mechanical complication as mentioned in a review article by Goodacre et al.[31] in their order of reported frequency was overdenture loss of retention/adjustment (30%). As supported by many authors, Johns et al.,[32] Hemmings et al.[33] and Allen et al.,[34] it was found that relining was required in significant number of overdenture patients, and loss of retention of mandibular overdenture was a significant problem.

Being the most common complication, our objective of the study was to find which overdenture attachment houses well with which denture base material so that loss of retention can be minimized, minimizing patient's dissatisfaction.

The Universal Testing Machine (UTM ACME Engineers) was used to perform our tests. The resulted fatigue resistance values ranged from approximately 4–40 N. However, the values decreased with increased number of cycles where the highest value obtained was 39.55 N (approximately 40 N) at 0 cycle. Our values were in accordance with a study by Setz et al.[35] in which ball and magnet attachments were compared till 15000 cycles. Retentive forces ranged between 3 and 85 N when retained by two implants. They assumed that forces of 20 N was sufficient for overdentures in edentulous mandible which was also proposed by Daou et al.[36] Repeated cyclic loading eventually constitutes a mechanical deterioration and progressive deformation leading to loss of retention, as done in our study.

In an in vitro study by Besimo et al.,[37] different types of attachments such as spherical anchor by Dalla Bona, cylindrical anchor by Dalla Bona, Conod, and Gerber attachment were evaluated and reported that the retention strengths between 5-8 N may be sufficient.

In a study by Gamborena et al.,[38] retention value was tested with different color-coded nylon plastic attachments of ERA attachment systems implicating that different material composition exhibited changes in the retention force. After a simulated 3 years of attachment placement and removal up to 5500 cycles, there was an overall retention loss ranging from 85% to 88%. In our study, rate of retention loss with ball and socket attachments was approximately 50% and 30% for Dalla bona, for over a period of 3 years. This can be attributed to the difference in housing materials as ball and socket attachments had nylon housings which may get deformed and Dalla Bona had metal housings which were quite rigid. The mechanism involved in the nylon surface loss seemed to be gross surface deformation and cohesive failure, resulting in significant deterioration rather than those totally made up of noble metals.[39]

Our analysis revealed that ball attachments produced higher levels of retention followed by Dalla Bona attachments. This result is also in accordance with a study by Shastry et al.[40] where the ball/o-ring and bar and clip attachments exhibited higher retentive capacities than the Locator® attachment over time.

The results of our study indicated that the different denture base materials such as autopolymerizing acrylic resin and heat cure acrylic resin used to house overdenture components to two different stud attachments, i.e., ball and socket attachments and Dalla Bona attachments, in two implant-supported mandibular overdenture had significant difference in values of fatigue resistance at cycles up to 4320, when indirect method was used; thus, the null hypothesis (H1) was rejected. Besides, since no statistically significant difference was found in both the attachments when relined using direct method, the null hypothesis (H0) was accepted

Limitation of the most in vitro fatigue studies is dry testing environment. Future research should develop such in vitro settings that can better replicate stresses occurring on attachments under function in an environment that simulates the oral cavity. The testing with more specimens would allow for more powerful results to be obtained.


  Conclusion Top


Through our results and statistical analysis, following conclusions could be made:

  1. Ball and socket attachments and Dalla Bona attachments when housed by direct technique, no significant difference was found at any cycle. However, with indirect technique, significant values were obtained.
  2. The ball and socket attachments relined with autopolymerizing acrylic resin showed no significant difference when compared with other two samples, from 0 cycle to 4320 cycles. However, with indirect method, significant results were obtained at all cycles.
  3. The Dalla Bona attachments had lesser initial values of retention as compared to ball and socket attachments. However, there was a significant difference in Dalla Bona attachments relined with autopolymerizing acrylic resin using direct method.
  4. The Dalla Bona attachments housed by indirect technique had the least value of initial retention. Besides, no significant differences in values were found in any cycle.
  5. No fracture or removal of any component was found.


In short, the order of preference in selecting overdenture attachments in terms of fatigue resistance can be as follows:

Ball and socket attachments with heat cure acrylic resin (indirect method) > Dalla Bona attachments with autopolymerizing acrylic resin (direct method) > Ball and socket attachments with autopolymerizing acrylic resin (direct method) > Dalla Bona attachments with heat cure acrylic resin (indirect method).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Burns DR. Mandibular implant overdenture treatment: Consensus and controversy. J Prosthodont 2000;9:37-46.  Back to cited text no. 1
[PUBMED]    
2.
Naert I, Alsaadi G, Quirynen M. Prosthetic aspects and patient satisfaction with two-implant-retained mandibular overdentures: A 10-year randomized clinical study. Int J Prosthodont 2004;17:401-10.  Back to cited text no. 2
    
3.
Feine JS, Carlsson GE, Awad MA. The McGill consensus statement on overdentures. Quintessence Int 2003;34:78-9.  Back to cited text no. 3
    
4.
Lee CK, Agar JR. Surgical and prosthetic planning for a two-implant-retained mandibular overdenture: A clinical report. J Prosthet Dent 2006;95:102-5.  Back to cited text no. 4
    
5.
Thomason JM, Feine J, Exley C, Moynihan P, Müller F, Naert I, et al. Mandibular two implant-supported overdentures as the first choice standard of care for edentulous patients – The york consensus statement. Br Dent J 2009;207:185-6.  Back to cited text no. 5
    
6.
Van Steenberghe D, Quirynen M, Calberson L, Demanet M. A prospective evaluation of the fate of 697 consecutive intra-oral fixtures ad modum Branemark in the rehabilitation of edentulism. J Head Neck Pathol 1987;6:53-8.  Back to cited text no. 6
    
7.
Walton JN. A randomized clinical trial comparing two mandibular implant overdenture designs: 3-year prosthetic outcomes using a six-field protocol. Int J Prosthodont 2003;16:255-60.  Back to cited text no. 7
    
8.
De Kok IJ, Chang KH, Lu TS, Cooper LF. Comparison of three-implant-supported fixed dentures and two-implant-retained overdentures in the edentulous mandible: A pilot study of treatment efficacy and patient satisfaction. Int J Oral Maxillofac Implants 2011;26:415-26.  Back to cited text no. 8
    
9.
Naert I, Gizani S, Vuylsteke M, Van Steenberghe D. A 5-year prospective randomized clinical trial on the influence of splinted and unsplinted oral implants retaining a mandibular overdenture: Prosthetic aspects and patient satisfaction. J Oral Rehabil 1999;26:195-202.  Back to cited text no. 9
    
10.
Gotfredsen K, Holm B. Implant-supported mandibular overdentures retained with ball or bar attachments: A randomized prospective 5-year study. Int J Prosthodont 2000;13:125-30.  Back to cited text no. 10
    
11.
Sadowsky SJ. Mandibular implant-retained overdentures: A literature review. J Prosthet Dent 2001;86:468-73.  Back to cited text no. 11
    
12.
Karabuda C, Yaltirik M, Bayraktar M. A clinical comparison of prosthetic complications of implant-supported overdentures with different attachment systems. Implant Dent 2008;17:74-81.  Back to cited text no. 12
    
13.
Cakarer S, Can T, Yaltirik M, Keskin C. Complications associated with the ball, bar and locator attachments for implant-supported overdentures. Med Oral Patol Oral Cir Bucal 2011;16:e953-9.  Back to cited text no. 13
    
14.
Shafie H. Clinical and Laboratory Manual of Implant Overdentures. Ames: Blackwell; 2007.  Back to cited text no. 14
    
15.
Ludwig K, Cretsi X, Kern M.In vitro retention force changes of ball anchor attachments depending on divergences of implants. Dtsch Zahnarztl Ztg 2006;61:142-6.  Back to cited text no. 15
    
16.
Bayer S, Keilig L, Kraus D, Grüner M, Stark H, Mues S, et al. Influence of the lubricant and the alloy on the wear behaviour of attachments. Gerodontology 2011;28:221-6.  Back to cited text no. 16
    
17.
Botega DM, Mesquita MF, Henriques GE, Vaz LG. Retention force and fatigue strength of overdenture attachment systems. J Oral Rehabil 2004;31:884-9.  Back to cited text no. 17
    
18.
Schwartz-Arad D, Kidron N, Dolev E. A long-term study of implants supporting overdentures as a model for implant success. J Periodontol 2005;76:1431-5.  Back to cited text no. 18
    
19.
Doundoulakis JH, Eckert SE, Lindquist CC, Jeffcoat MK. The implant-supported overdenture as an alternative to the complete mandibular denture. J Am Dent Assoc 2003;134:1455-8.  Back to cited text no. 19
    
20.
Cune M, van Kampen F, van der Bilt A, Bosman F. Patient satisfaction and preference with magnet, bar-clip, and ball-socket retained mandibular implant overdentures: A cross-over clinical trial. Int J Prosthodont 2005;18:99-105.  Back to cited text no. 20
    
21.
Kobayashi M, Srinivasan M, Ammann P, Perriard J, Ohkubo C, Müller F, et al. Effects of in vitro cyclic dislodging on retentive force and removal torque of three overdenture attachment systems. Clin Oral Implants Res 2014;25:426-34.  Back to cited text no. 21
    
22.
Al-Ghafli SA, Michalakis KX, Hirayama H, Kang K. The in vitro effect of different implant angulations and cyclic dislodgement on the retentive properties of an overdenture attachment system. J Prosthet Dent 2009;102:140-7.  Back to cited text no. 22
    
23.
Sadig WM. Special technique for attachment incorporation with an implant overdenture. J Prosthet Dent 2003;89:93-6.  Back to cited text no. 23
    
24.
Nissan J, Oz-Ari B, Gross O, Ghelfan O, Chaushu G. Long-term prosthetic aftercare of direct vs. indirect attachment incorporation techniques to mandibular implant-supported overdenture. Clin Oral Implants Res 2011;22:627-30.  Back to cited text no. 24
    
25.
Dominici JT, Kinderknecht KE, Patella-Clark E. Clinical procedure for stabilizing and connecting O-ring attachments to a mandibular implant overdenture. J Prosthet Dent 1996;76:330-3.  Back to cited text no. 25
    
26.
Taddei C, Metz M, Waltman E, Etienne O. Direct procedure for connecting a mandibular implant-retained overdenture with ball attachments. J Prosthet Dent 2004;92:403-4.  Back to cited text no. 26
    
27.
Rudd K, Morrow R, Rhoads J. Dental Laboratory Procedures: Removable Partial Dentures. 2nd ed., Vol. 3. St. Louis: Mosby; 1985. p. 609.  Back to cited text no. 27
    
28.
Bidra AS, Agar JR, Taylor TD, Lee C, Ortegon S. Techniques for incorporation of attachments in implant-retained overdentures with unsplinted abutments. J Prosthet Dent 2012;107:288-99.  Back to cited text no. 28
    
29.
Saito M, Kanazawa M, Takahashi H, Uo M, Minakuchi S. Trend of change in retentive force for bar attachments with different materials. J Prosthet Dent 2014;112:1545-52.  Back to cited text no. 29
    
30.
Guttal SS, Nadiger RK, Abhichandani S. Effect of insertion and removal of tooth supported overdentures on retention strength and fatigue resistance of two commercially available attachment systems. Int J Prosthodont Restor Dent 2012;2:47-51.  Back to cited text no. 30
    
31.
Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32.  Back to cited text no. 31
    
32.
Johns RB, Jemt T, Heath MR, Hutton JE, McKenna S, McNamara DC, et al. A multicenter study of overdentures supported by Brånemark implants. Int J Oral Maxillofac Implants 1992;7:513-22.  Back to cited text no. 32
    
33.
Hemmings KW, Schmitt A, Zarb GA. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: A 5-year report. Int J Oral Maxillofac Implants 1994;9:191-6.  Back to cited text no. 33
    
34.
Allen PF, McMillan AS, Smith DG. Complications and maintenance requirements of implant-supported prostheses provided in a UK dental hospital. Br Dent J 1997;182:298-302.  Back to cited text no. 34
    
35.
Setz I, Lee SH, Engel E. Retention of prefabricated attachments for implant stabilized overdentures in the edentulous mandible: An in vitro study. J Prosthet Dent 1998;80:323-9.  Back to cited text no. 35
    
36.
Daou EE. Biomaterial aspects: A key factor in the longevity of implant overdenture attachment systems. J Int Soc Prev Community Dent 2015;5:255-62.  Back to cited text no. 36
    
37.
Besimo CE, Guarneri A.In vitro retention force changes of prefabricated attachments for overdentures. J Oral Rehabil 2003;30:671-8.  Back to cited text no. 37
    
38.
Gamborena JI, Hazelton LR, NaBadalung D, Brudvik J. Retention of ERA direct overdenture attachments before and after fatigue loading. Int J Prosthodont 1997;10:123-30.  Back to cited text no. 38
    
39.
Reda KM, El-Torky IR, El-Gendy MN.In vitro retention force measurement for three different attachment systems for implant-retained overdenture. J Indian Prosthodont Soc 2016;16:380-5.  Back to cited text no. 39
[PUBMED]  [Full text]  
40.
Shastry T, Anupama NM, Shetty S, Nalinakshamma M. An in vitro comparative study to evaluate the retention of different attachment systems used in implant-retained overdentures. J Indian Prosthodont Soc 2016;16:159-66.  Back to cited text no. 40
[PUBMED]  [Full text]  


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9], [Figure 10], [Figure 11]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1148    
    Printed33    
    Emailed0    
    PDF Downloaded214    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]